3.4.7 \(\int \frac {(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^{3/2}} \, dx\) [307]

3.4.7.1 Optimal result
3.4.7.2 Mathematica [C] (verified)
3.4.7.3 Rubi [A] (verified)
3.4.7.4 Maple [A] (verified)
3.4.7.5 Fricas [C] (verification not implemented)
3.4.7.6 Sympy [F]
3.4.7.7 Maxima [F]
3.4.7.8 Giac [F(-1)]
3.4.7.9 Mupad [F(-1)]

3.4.7.1 Optimal result

Integrand size = 27, antiderivative size = 236 \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a+a \sin (c+d x))^{3/2}}-\frac {2 e \sqrt {e \cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{a^2 d}+\frac {2 e^{3/2} \text {arcsinh}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{a^2 d (1+\cos (c+d x)+\sin (c+d x))}-\frac {2 e^{3/2} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{a^2 d (1+\cos (c+d x)+\sin (c+d x))} \]

output
-2*(e*cos(d*x+c))^(5/2)/d/e/(a+a*sin(d*x+c))^(3/2)-2*e*(e*cos(d*x+c))^(1/2 
)*(a+a*sin(d*x+c))^(1/2)/a^2/d+2*e^(3/2)*arcsinh((e*cos(d*x+c))^(1/2)/e^(1 
/2))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/a^2/d/(1+cos(d*x+c)+sin(d 
*x+c))-2*e^(3/2)*arctan(sin(d*x+c)*e^(1/2)/(e*cos(d*x+c))^(1/2)/(1+cos(d*x 
+c))^(1/2))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/a^2/d/(1+cos(d*x+c 
)+sin(d*x+c))
 
3.4.7.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.08 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.34 \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {2^{3/4} (e \cos (c+d x))^{5/2} \operatorname {Hypergeometric2F1}\left (\frac {5}{4},\frac {5}{4},\frac {9}{4},\frac {1}{2} (1-\sin (c+d x))\right ) \sqrt {a (1+\sin (c+d x))}}{5 a^2 d e (1+\sin (c+d x))^{7/4}} \]

input
Integrate[(e*Cos[c + d*x])^(3/2)/(a + a*Sin[c + d*x])^(3/2),x]
 
output
-1/5*(2^(3/4)*(e*Cos[c + d*x])^(5/2)*Hypergeometric2F1[5/4, 5/4, 9/4, (1 - 
 Sin[c + d*x])/2]*Sqrt[a*(1 + Sin[c + d*x])])/(a^2*d*e*(1 + Sin[c + d*x])^ 
(7/4))
 
3.4.7.3 Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.04, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.481, Rules used = {3042, 3160, 3042, 3164, 3042, 3156, 3042, 25, 3254, 216, 3312, 63, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cos (c+d x))^{3/2}}{(a \sin (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \cos (c+d x))^{3/2}}{(a \sin (c+d x)+a)^{3/2}}dx\)

\(\Big \downarrow \) 3160

\(\displaystyle -\frac {2 \int \frac {(e \cos (c+d x))^{3/2}}{\sqrt {\sin (c+d x) a+a}}dx}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \int \frac {(e \cos (c+d x))^{3/2}}{\sqrt {\sin (c+d x) a+a}}dx}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3164

\(\displaystyle -\frac {2 \left (\frac {e^2 \int \frac {\sqrt {\sin (c+d x) a+a}}{\sqrt {e \cos (c+d x)}}dx}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \left (\frac {e^2 \int \frac {\sqrt {\sin (c+d x) a+a}}{\sqrt {e \cos (c+d x)}}dx}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3156

\(\displaystyle -\frac {2 \left (\frac {e^2 \left (\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\cos (c+d x)+1}}{\sqrt {e \cos (c+d x)}}dx}{\sin (c+d x)+\cos (c+d x)+1}+\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \left (\frac {e^2 \left (\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int -\frac {\cos \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}+\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sin (c+d x)+\cos (c+d x)+1}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \left (\frac {e^2 \left (\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sin (c+d x)+\cos (c+d x)+1}-\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3254

\(\displaystyle -\frac {2 \left (\frac {e^2 \left (-\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}-\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x)}{\cos (c+d x)+1}+1}d\left (-\frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}\right )}{d (\sin (c+d x)+\cos (c+d x)+1)}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 \left (\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3312

\(\displaystyle -\frac {2 \left (\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}d\cos (c+d x)}{d (\sin (c+d x)+\cos (c+d x)+1)}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 63

\(\displaystyle -\frac {2 \left (\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\sqrt {\cos (c+d x)+1}}d\sqrt {e \cos (c+d x)}}{d e (\sin (c+d x)+\cos (c+d x)+1)}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 222

\(\displaystyle -\frac {2 \left (\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \text {arcsinh}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )}{a}-\frac {2 (e \cos (c+d x))^{5/2}}{d e (a \sin (c+d x)+a)^{3/2}}\)

input
Int[(e*Cos[c + d*x])^(3/2)/(a + a*Sin[c + d*x])^(3/2),x]
 
output
(-2*(e*Cos[c + d*x])^(5/2))/(d*e*(a + a*Sin[c + d*x])^(3/2)) - (2*((e*Sqrt 
[e*Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(a*d) + (e^2*((-2*ArcSinh[Sqrt[ 
e*Cos[c + d*x]]/Sqrt[e]]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/ 
(d*Sqrt[e]*(1 + Cos[c + d*x] + Sin[c + d*x])) + (2*ArcTan[(Sqrt[e]*Sin[c + 
 d*x])/(Sqrt[e*Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]])]*Sqrt[1 + Cos[c + d*x 
]]*Sqrt[a + a*Sin[c + d*x]])/(d*Sqrt[e]*(1 + Cos[c + d*x] + Sin[c + d*x])) 
))/(2*a)))/a
 

3.4.7.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 63
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b   S 
ubst[Int[1/Sqrt[c + d*(x^2/b)], x], x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x 
] && GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3156
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[cos[(e_.) + (f_.)*(x_)] 
*(g_.)], x_Symbol] :> Simp[a*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x 
]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x]))   Int[Sqrt[1 + Cos[e + f*x]]/Sqrt 
[g*Cos[e + f*x]], x], x] + Simp[b*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e 
+ f*x]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x]))   Int[Sin[e + f*x]/(Sqrt[g*C 
os[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, g}, x] & 
& EqQ[a^2 - b^2, 0]
 

rule 3160
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^m/(a*f*g*(2*m + p + 1))), x] + Simp[(m + p + 1)/(a*(2*m + p + 1))   Int[ 
(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, 
f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] & 
& IntegersQ[2*m, 2*p]
 

rule 3164
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(3/2)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)]], x_Symbol] :> Simp[g*Sqrt[g*Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x 
]]/(b*f)), x] + Simp[g^2/(2*a)   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[g*Cos[e 
+ f*x]], x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
 

rule 3254
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b + d*x^2), x], 
x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))], x 
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] 
 && NeQ[c^2 - d^2, 0]
 

rule 3312
Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*(( 
c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b*f)   Su 
bst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, 
b, c, d, e, f, m, n}, x]
 
3.4.7.4 Maple [A] (verified)

Time = 2.81 (sec) , antiderivative size = 317, normalized size of antiderivative = 1.34

method result size
default \(\frac {\left (\cos \left (d x +c \right ) \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+\sin \left (d x +c \right ) \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+\cos \left (d x +c \right ) \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\sin \left (d x +c \right ) \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-4 \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+\arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-4 \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {e \cos \left (d x +c \right )}\, e}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {a \left (1+\sin \left (d x +c \right )\right )}\, \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}\) \(317\)

input
int((e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/d*(cos(d*x+c)*arctanh(sin(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/(1+cos(d*x+ 
c)))^(1/2))+sin(d*x+c)*arctanh(sin(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/(1+c 
os(d*x+c)))^(1/2))+cos(d*x+c)*arctan((-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+s 
in(d*x+c)*arctan((-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-4*cos(d*x+c)*(-cos(d* 
x+c)/(1+cos(d*x+c)))^(1/2)+arctanh(sin(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/ 
(1+cos(d*x+c)))^(1/2))+arctan((-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-4*(-cos( 
d*x+c)/(1+cos(d*x+c)))^(1/2))*(e*cos(d*x+c))^(1/2)*e/(1+cos(d*x+c))/(a*(1+ 
sin(d*x+c)))^(1/2)/(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/a
 
3.4.7.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.50 (sec) , antiderivative size = 1096, normalized size of antiderivative = 4.64 \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate((e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas 
")
 
output
1/2*((-I*a^2*d*sin(d*x + c) - I*a^2*d)*(-e^6/(a^6*d^4))^(1/4)*log(-(2*(e^4 
*sin(d*x + c) + (a^3*d^2*e*cos(d*x + c) + a^3*d^2*e)*sqrt(-e^6/(a^6*d^4))) 
*sqrt(e*cos(d*x + c))*sqrt(a*sin(d*x + c) + a) - (I*a^5*d^3*cos(d*x + c) + 
 I*a^5*d^3 + (2*I*a^5*d^3*cos(d*x + c) + I*a^5*d^3)*sin(d*x + c))*(-e^6/(a 
^6*d^4))^(3/4) - (-2*I*a^2*d*e^3*cos(d*x + c)^2 - I*a^2*d*e^3*cos(d*x + c) 
 + I*a^2*d*e^3*sin(d*x + c) + I*a^2*d*e^3)*(-e^6/(a^6*d^4))^(1/4))/(cos(d* 
x + c) + sin(d*x + c) + 1)) + (I*a^2*d*sin(d*x + c) + I*a^2*d)*(-e^6/(a^6* 
d^4))^(1/4)*log(-(2*(e^4*sin(d*x + c) + (a^3*d^2*e*cos(d*x + c) + a^3*d^2* 
e)*sqrt(-e^6/(a^6*d^4)))*sqrt(e*cos(d*x + c))*sqrt(a*sin(d*x + c) + a) - ( 
-I*a^5*d^3*cos(d*x + c) - I*a^5*d^3 + (-2*I*a^5*d^3*cos(d*x + c) - I*a^5*d 
^3)*sin(d*x + c))*(-e^6/(a^6*d^4))^(3/4) - (2*I*a^2*d*e^3*cos(d*x + c)^2 + 
 I*a^2*d*e^3*cos(d*x + c) - I*a^2*d*e^3*sin(d*x + c) - I*a^2*d*e^3)*(-e^6/ 
(a^6*d^4))^(1/4))/(cos(d*x + c) + sin(d*x + c) + 1)) - (a^2*d*sin(d*x + c) 
 + a^2*d)*(-e^6/(a^6*d^4))^(1/4)*log(-(2*(e^4*sin(d*x + c) - (a^3*d^2*e*co 
s(d*x + c) + a^3*d^2*e)*sqrt(-e^6/(a^6*d^4)))*sqrt(e*cos(d*x + c))*sqrt(a* 
sin(d*x + c) + a) + (a^5*d^3*cos(d*x + c) + a^5*d^3 + (2*a^5*d^3*cos(d*x + 
 c) + a^5*d^3)*sin(d*x + c))*(-e^6/(a^6*d^4))^(3/4) + (2*a^2*d*e^3*cos(d*x 
 + c)^2 + a^2*d*e^3*cos(d*x + c) - a^2*d*e^3*sin(d*x + c) - a^2*d*e^3)*(-e 
^6/(a^6*d^4))^(1/4))/(cos(d*x + c) + sin(d*x + c) + 1)) + (a^2*d*sin(d*x + 
 c) + a^2*d)*(-e^6/(a^6*d^4))^(1/4)*log(-(2*(e^4*sin(d*x + c) - (a^3*d^...
 
3.4.7.6 Sympy [F]

\[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {\left (e \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate((e*cos(d*x+c))**(3/2)/(a+a*sin(d*x+c))**(3/2),x)
 
output
Integral((e*cos(c + d*x))**(3/2)/(a*(sin(c + d*x) + 1))**(3/2), x)
 
3.4.7.7 Maxima [F]

\[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^{3/2}} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima 
")
 
output
integrate((e*cos(d*x + c))^(3/2)/(a*sin(d*x + c) + a)^(3/2), x)
 
3.4.7.8 Giac [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.4.7.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((e*cos(c + d*x))^(3/2)/(a + a*sin(c + d*x))^(3/2),x)
 
output
int((e*cos(c + d*x))^(3/2)/(a + a*sin(c + d*x))^(3/2), x)